Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Vet J ; 13(10): 1326-1333, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38027402

ABSTRACT

Background: Hypoxia ischemia leads to abnormal behavior and growth. Prenatal hypoxia also decreases brain adaptive potential, which can cause fatal effects such as cell death. Asiatic acid (AA) in Centella asiatica is a neuroprotector through antioxidant and anti-inflammatory activities. Aim: This study aimed to analyze the effect of AA as a neuroprotector against hypoxia during intrauterine development on locomotor activity, head width, and brain-derived neurotrophic factor (BDNF) expression. Methods: The true experimental laboratory research used a posttest control-only design. Zebrafish embryos (Danio rerio) aged 0-2 dpf (days postfertilization) were exposed to hypoxia with oxygen levels reaching 1.5 mg/l. Then, AA was administered at successive concentrations, namely, 0.36, 0.72, and 1.45 µg/ml, at 2 hpf (hours postfertilization), 3, 6, and 9 dpf. Head width, velocity activity, and BDNF expression were observed. Results: Intrauterine hypoxia significantly decreased head width, velocity rate, and BDNF expression (<0.001). Administration of AA at all concentrations and age 9 dpf to zebrafish larvae with intrauterine hypoxia exposure increased head width ( p < 0.0001), velocity (p < 0.05), and relative mRNA expression of BDNF (p < 0.05). Conclusion: AA is potentially neuroprotective to the brain in zebrafish larvae exposed to hypoxia during intrauterine development.


Subject(s)
Brain-Derived Neurotrophic Factor , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/metabolism , Larva , Hypoxia/veterinary
2.
Open Vet J ; 13(5): 629-637, 2023 05.
Article in English | MEDLINE | ID: mdl-37304601

ABSTRACT

Background: Hypoxia during pregnancy generates oxidative stress that alters the growth and development of the human fetus. Insulin-like growth factor-1 (IGF-1) receptors are essential for normal fetal growth. Asiatic acid in Centella asiatica (CA) has antioxidant properties to prevent growth impairment in hypoxia. Aims: This study aimed to investigate the effect of asiatic acid on the morphological development of an intermittent hypoxia (IH) zebrafish embryo model and analyze molecular docking prediction in IGF-1 receptor (IGF-1R) signaling. Methods: Embryos of zebrafish at 2 hours postfertilization (hpf) were assigned to control negative (C), IH, and combination IH and CA extract groups consisting of 1.25 (IHCA1), 2.5 (IHCA2), and 5 (IHCA3) µg/ml. Hypoxia treatment (conducted 4 hours/day) and CA extract were administered for 3 days (2-72 hpf). The parameters of body length and head length were evaluated at 3, 6, and 9 days postfertilization (dpf). The data were analyzed by a two-way analysis of variance (p < 0.05). Molecular docking was performed to explore the binding affinity of asiatic acid to IGF-1R by Molegro Virtual Docker ver.5 software. Results: The body length and head length of embryos in the IH and treatment groups (IHCA) were shorter than those in the control group at 3 dpf (p < 0.05). However, the body length was more prolonged in the IHCA1 group, but the head length was longer in the IHCA2 group than in the IH group at 6 and 9 dpf. Molecular docking showed the reliable interaction of asiatic acid with IGF-1R signaling in an IH animal model. Conclusion: The administration of CA extract benefits IH through the development and growth of zebrafish embryos at a dose of 2.5-5 µg/ml. Asiatic acid has a binding affinity for IGF-1R signaling.


Subject(s)
Insulin-Like Growth Factor I , Zebrafish , Animals , Female , Humans , Pregnancy , Receptor, IGF Type 1 , Molecular Docking Simulation , Hypoxia/veterinary , Plant Extracts
3.
Open Vet J ; 13(5): 532-540, 2023 05.
Article in English | MEDLINE | ID: mdl-37304614

ABSTRACT

Background: Consumed fructose enters enterocytes of the intestinal epithelial apical membrane mediated by glucose transporter 5 (GLUT5). Aim: To determine the effects of Lombok Island's local Moringa leaf powder on reducing liver fructose levels and GLUT5 expression in the small intestine of albino rats (Rattus novergicus) fed a high-fructose diet. Methods: Moringa leaf (Moringa oleifera) was obtained from Lombok Island, Indonesia. Subsequently, 30 male albino rats (R. novergicus) were used, divided into the normal group (NG), treatment group 1 (T1G), treatment group 2 (T2G), Quercetin group (QG), Moringa group (MG). Quercetin and moringa leaf powder (M. oleifera) was administered at 50 and 500 mg/kgbw for 28 days. Enzyme-linked immunosorbent assay (Elisa) method was used to examine liver fructose levels. The observation of GLUT5 expression in the small intestine was performed by the Immunofluorescence method. Results: The ANOVA test proved that there are significant differences (p < 0.005) in liver fructose levels in all groups. Further post hoc tests show no significant difference (p > 0.005) in liver fructose levels in rats fed a high fructose diet in T1G and T2G with QG and MG rats. However, Moringa leaf powder reduces liver fructose levels by 32.1% and 17.2% in T1G and T2G rats, respectively. The ANOVA test showed a significant difference (p < 0.005) in the expression of GLUT5 in all groups. Further post hoc tests showed a significant difference (p < 0.005) in the expression of GLUT5 in the duodenum, jejunum, and ileum between the NG and the T1G rats. Meanwhile, in T2G rats, significant differences were only found in the jejunum. Moringa leaf powder reduces GLUT5 expression in T1G rats by 44.5%, 59.5%, and 57.2% in the duodenum, jejunum, and ileum, whereas in T2G rats is by 33.5%, 50.2%, and 48.1%, respectively. Conclusion: The administration of local moringa (M. oleifera) leaf powder in Lombok Island had an effect on reducing GLUT5 expression in the small intestine, however, did not in liver fructose levels of albino rats (R. novergicus) fed a high-fructose diet.


Subject(s)
Moringa oleifera , Moringa , Male , Animals , Rats , Powders , Quercetin , Liver , Diet/veterinary , Fructose/pharmacology , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...